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Outline

Recognition Pipeline
Pre-processing

- Data Magnification (spatial)

- Data Interpolation (temporal)

Feature Extraction / Learning
- LBP-based Methods

- Optical flow-based Methods

- Highlighted Work: Less Is More: Micro-Expression
Recognition from Video using Apex Frame

- Deep learning Methods ... based on
* Input
- Depth
- Data Domain

Spot-then-Recognize Approach
Spotting “in the wild”



ME
Recognition Typically, a ME recognition process will follow

these steps:

Face Alignment

Motion Magnification /
Temporal Interpolation

Pipeline

Feature Extraction
Classification




Pre-processing

Basic Pre-processing steps: Face Alignment, Face Registration,
Region partitioning (not mandatory)

For RECOGNITION, 2 essential pre-processing steps:

- Data Magnification:

- Amplify or exaggerate facial information spatially =» solves the
subtleness in ME movements

- Data Interpolation:

- Interpolate or extrapolate facial information temporally = solves the
unevenness of sample durations, and redundancy (or lack) of
information




Motion Magnification

- "Subtleness”: Intensity levels of facial ME movements are very
low =» extremely difficult to discriminate ME types

- Eulerian Motion Magnification (Wu et al. SIGGRAPH 2012)

- Different spatial frequency bands from decomposed video are band-
passed at different spatial levels, and signals are amplified by a
magnification factor
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https://people.csail.mit.edu/mrub/vidmag/




Motion Magnification in ME

- Park et al. (2014) — Adaptive selection of most discriminative
frequency bands needed before magnification
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- Le Ngo et al. (2016) — Theoretical estimation of upper bounds of

effective magnification factors
- Empirical proof of Wu's proposed bounds w.r.t. spatial cut-off wavelength:
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Motion Magnification in ME

- Li et al. (2017) — Demonstrated that EVM can enlarge the difference
between different ME categories (inter-class difference) =» Recognition
rate increases

- Larger factors cause undesired amplified noise, which degrades

performance -
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Motion Magnification in ME: “Local” vs. “Global”

- Le Ngo et al. (2018)
 "Local” Eulerian model = Modifying intensities of video frames based on

frame information }
ol (x,y,t ,’
I{-T-: y}t ‘I‘ 1) = I(-Tj y‘.l t) _I_ Z TE ( aty ) :::-hq-- | 'x’
" ‘ """" WP —

- "Global” Lagrangian model = Synthesizing magnified motion from
statistical model of the whole video sequence

Livi(z,y,t+ 1) =L(z+u,y+v,t)
It = warp(Ig,o(u,v))

warp:. a synthesis operation from I to I
I7: magnified image

Ir: reference image

o: magnification of motion fields




Visual Comparison
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Data Interpolation

- "Redundancy” or “Brevity”: Uneven lengths of ME samples
* Too short: Insufficient information
* Too long: Redundant frames can produce poor representations

- Temporal Interpolation Method (TIM) (Zhou et al. CVPR2011)

- Originally proposed for interpolating frames in lip-reading sequences

Basic Idea:

» Interpolate feature vectors to a manifold

» Create new feature vectors by sampling (at
uniform intervals) from positions on manifold

Used in SMIC and CASME II baselines




Dynamic selection: Reduce and compress

Interpolation/extrapolation is a “blanket” operation

» Does not consider intrinsic dynamics in each
video

» Selection based on # frames does not generalize
well to MEs exhibited by different people and
emotion types

Intuition: Reduce-and-compress

In speech processing/lip reading, informative samples
is more certain after trimming, TIM is acceptable =
Interpolation can be done on the originally assumed
manifold

What we want: Find informative information based on
sparse constraints, and make a reduced size selection
(subset selection < number of frames)

What we need to make sure: The informative stuff is
preserved! (as well as we can)

Fil
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Sparsity-Promoting Dynamic Mode Decomposition (DMDSP)

Basic Idea of DMDSP:

» Decomposition by DMD

» Learn sparse structures (L1) to keep only modes that minimizes loss during reconstruction
* Reconstruct back shorter sequence using the modes
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Sparsity-Promoting Dynamic Mode Decomposition (DMDSP)

time
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DMDSP+LBP-TOP for ME: Results

CASME II SMIC
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Feature Extraction Techniques

[.  LBP-TOP LBP-based methods (texture)
II. Optical Flow-based methods (motion)
[II. Other descriptor based methods

IV. Deep learning methods



(I) Local Binary Pattern (LBP)

- 2D texture descriptor = describes a particular local texture patch in
very compact binary codes

- Popular and proven robust against image variations (rotation,
translation, illumination)
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Local Binary Pattern (LBP) on Three Orthogonal Planes (TOP)

- LBP extended to temporal dimension (dynamic texture descriptor)
* Video is seen as a 3D volume

- Simple idea: Apply LBP to all 3 planes in volume (XY, XT, YT),

concatenate histograms |
=% L.J L MJ -.:.l.t.l.,..uv.l..w

e

- Block-based LBP-TOP

* Divide into blocks, each block extracts LBP-TOP histograms, concatenate
again




Local Binary Pattern (LBP) on Six Intersection Points (SIP)

- Reduce 3 orthogonal planes to 6 distinct neighbour points (remove all

overlapping points considered usually)

(a) (b)

Feature extraction time: ~2.8x improvement

Feature dimension: ~2.4x reduction

4-neighbour points set {D, E, F, G} for XY

{E. A, G, B} for XT
(D, A, F,B} for YT

XYNXTNYT = {A,B,D,E,F.G)}

CASMEIL SMIC
LBP-TOP (%) LBP-SIP (%) | LBP-TOP (%) LBP-5SIP (%)
Linear 62.75 63.56 G0.98 64.02
RBF 65.99 Gi6.40 G0.98 G2.80




Other variants of LBP-TOP for ME

- LBP-Mean of Orthogonal Planes (MOP) (Wang et al., 2015)

- Spatio-Temporal Completed Local Quantized Patterns (STCLQP)

(Huang et al., 2016)
- Exploit more information: Sign, magnitude and orientation components

- Codebook reduction

- Spatio-temporal Local Randon Binary Pattern (STRBP) (Huang &
Zhao, 2017)

- Hot Wheel Patterns (HWP) (Ben et al. 2017)
* Encode discriminative features of macro- and micro-expressions

* Coupled metric learning algorithm to model shared features



(I1) Optical Flow

- Optical Flow: An estimation of the apparent motion of pixel intensities
(or edges, surfaces, objects) over time in a video

Optical Flow

Accumulative
Optical Flow

Zhao, J., Mao, X., & Zhang, J. (2018). Learning deep facial expression features from image and optical flow sequences using 3D
CNN. The Visual Computer, 34(10), 1461-1475.



Optical Flow

- Among the Optical Flow flavours commonly used in ME motion
representation:
- Lucas-Kanade

Horn-Schunck

Black-Anandan

Dense Optical Flow (Farneback)
TV-L1

happiness sadness surprise

.

Zhao, Y., & Xu, J. (2019). A Convolutional Neural Network for Compound Micro-Expression Recognition. Sensors, 1924), 5553.

.
A ~



Selective towards principal directions of flow

- Extract only principal directions of optical
flow from ME sequences

- Facial Dynamic Map (FDM) (Xu et al., T-AC
2017)

- Divide each sequence into spatio-temporal cuboids
in a chosen granularity

-+ An optimal strategy computes the principal optical
flow direction to be used as features

- Main Directional Mean Optical-flow (MDMO)
(Liu et al, T-AC 2017)
- ROI-based normalized statistical feature based on

the main direction of the optical flow in polar
coordinates

* 36 ROIs = slim feature dimension of only 36 x 2 =
72

[=l=w]t [a]e]~]




Selective towards regions of consistent flow

- Allaert et al. (2017)

- Dense Optical Flow (Farneback’s) is used to
capture local motions based on direction and
magnitude constraints =» known as Regions
of High Probability of Movement or RHPM

- Each RHPM analyse their neighbours’
behaviours in order to estimate the
propagation of motion in whole face

- Filtered optical flow field is computed from
each RHPM

- Facial motion descriptors are constructed from
the filtered optical flow field of 25 pre-
designated ROIs




Optical Strain

+ Assuming motion is sufficiently small, its corresponding finite strain tensor is
defined as

Normal strain components

e = %[?u + (Vu)7]

\

£ = Exx = % E.ty - 9
- _1ysdv o
Eyr = 35 T 5y Syy =
X Shear strain components

« Optical strain magnitudes for each pixel can be computed by sum of squares
of all components:

IEE:'HI - JEI:IEE + Eyyi} + EIFE + E-HIE.




Optical Strain

- Original idea by Shreve et al. for identifying macro and

micro-expressions

- Optical Strain (OS) was fully modelled by Liong for use in

ME recognition

* Transform OS magnitudes into features (Liong et al. 2014)
=» magnitudes are pooled temporally to form a single
normalized OS map, resized to smaller matrix as feature

* OS-weighted LBP-TOP features (Liong et al., ACCV 2014)
=>» allows regions that exhibit active ME motions to be given
more significance, increasing discrimini =

emotion types

| i




Constructing histograms from flow

- Zhang et al., 2017: Region-by-region Aggregation of Histogram of

Oriented Optical Flow (HOOF) and LBP-TOP to construct rich local
statistical features

- Doing it with ROIs yield even better results than globally done
- Happy & Routray, 2017: Fuzzy histogram of optical flow orientations
(FHOFO)

- Assumption: MEs are so subtle that the induced magnitudes can be
ignored.

- Idea: "Fuzzify” the orientation angles to its surrounding bins as such that
smooth histograms for motion vector are created



Integral projection

Face alignment ‘ Difference images - Plrl:);ee?t?oln ‘ 1D-LBP ‘ Histogram
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- Huang et al., ICCV Workshops 2015

- Integral projection based on difference images is used to obtain
horizontal and vertical projections

- Apply 1DLBP operators on both projections to obtain features
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ROI-centric methods

- A number of works place priority in locating
features at the most salient areas of the face
that corresponds strongly to ME motions:

* Lu et al., ACCVW 2014: Use Delaunay

triangulation on facial landmark points to
obtain 60 ROIs

- Zhang et al., MMM 2017: Use the most
representative 9 ROIs from 46 components
decomposed from FACS

- Liong et al., JSPS 2018: Use only 3 main
ROIs as depicted by the eyes and mouth
landmark boundaries




(1l1) Other feature extractors

- Riesz wavelet representations
- Monogenic Riesz wavelet framework, Oh et al., 2015

- Higher-order Riesz transform, Oh et al., 2016

- Tensor space features
- Tensor Independent Color Space (TICS), Wang et al. 2015

- Sparse Tensor Canonical Correlation Analysis (STCCA), Wang et al.,
2016

- Removing latent factors (pose, identity, race, gender)

- Robust PCA + Local spatio-temporal directional features, Wang et al.
2014

- Multimodal Discriminant Analysis (MMDA), Lee et al. 2017



Classification

- A large majority of works use the standard SVM classifier (linear
kernel) to classify the extracted features

- Three other notable classifiers (A~NN, Random Forest, MKL) are also
used in a few works but very rare (!):

- Observations: RF and MKL tends to overfit to much of the features used,
while k-NN performs quite poorly due to infeasibility for sparse high-
dimensional data

- Several works tried dealing with the sparseness by proposing:
- Relaxed K-SVD (Zheng et al.,, 2016)

- Sparse representation classifier (SRC) (Zheng, 2017)
- Kernelized GSL (Zong et al, 2018)
- Extreme Learning Machine (ELM) (Adegun & Vadapalli, 2016)

* Deep learning methods mainly rely on the softmax layer to classify,
since they can be trained end-to-end with feature learning



Evaluation Protocol & Performance Metrics

- Leave-One-Subject-Out (LOSO) cross-validation: ME datasets are
collected from different subjects - The subjects form groups that can
be “held-out” to avoid identity bias.

- First discussed and analysed in-depth by Le Ngo et al. (2014)

- Some early papers reported LOVO (leave-one-video-out), but primarily
almost everyone uses LOSO now ©

- Performance Metrics

- Typically many works still report the Accuracy metric, which tends to be
bias in ME datasets which are naturally imbalanced

- We advocate the use of F1-score (can be either micro-averaged or
macro-averaged) to provide a better reflection of performance

Precision - Recall

Fl-Score=2-
Precision + Recall
.. ip
Precision =
tp + fp
3
REE-EH = P

tp + fn



Less Is More: Micro-Expression
Recognition from Video using Apex Frame

Signal Processing: Image Communication, 2018

Sze-Teng Liong, John See, KokSheik Wong,
Raphael C.W. Phan

MONASH
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Prima facie

I. The apex frame is the most II. The apex frame is sufficient

important frame in the micro- for micro-expression

expression clip recognition

v'Ekman: Emotions are v'“Less is more”? Could too much
characterised by the change in data clouding the abllity to
facial contraction. create good feature

v’ Exposito: Visual information representations?
(video) conveys poor emotional v'If performance with one frame is
information, due to cognitive as good as using a full sequence,
overload. computation cost can be saved.

The apex should then contain the strongest
change in facial movements, and we can also
reduce redundancy



What is there at the apex?

n 29

Frame index

- Apex: The frame where the AU reaches the peak or the point of
highest intensity of facial motion.

- Optical Flow and Optical Strain shows significant magnitude at the
apex.

- Datasets that do not provide the apices (SMICs) required spotting
apex! in advance. CASME Il apex can be directly used.

! Liong et al. (2015). Automatic apex frame spotting in micro-expression database. ACPR



Bi-Weighted Oriented Optical Flow (Bi-WOOF)

Orientation, ¢

Magnitude, p
Local weight

Optical strain, &

X > Global weight

(©) ’ (d)

ba H b L

1
Gby by = ﬁ Z Z Ex.ys

y=(by—1)H+1 z=(b;—1)L+1



Optical Flow & Optical Strain

(c) 6

Optical Flow estimation

Horizontal and vertical flov . _ d= ~_ dyr
p=lp=—a=—

Magnitude & orientation (Euclidean - Polar
coordinates of the flow vector
Pzy = \/ If*".r:_T,n'2 + 'fi‘r.‘-:.!s'2

Oz y = tan 1 =¥
Py

Optical Strain calculation

Approximating deformation intensity:
Strain tensor

£ = %[‘?u +(Vu)T)

du

= f— = —

<rr — Ar fxy —
. _1gv  du . _ v
ey = 3(5z + 5) Eyy = By
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Experimental Results & Benchmarking

(a) Baseline

DIS HAP OTH SUR REP

DIS .20 .11 .66 .02 .02
HAP 09 .47 25 0 .19
Methods CASME 1T SMIC-HS SMIC-VIS SMIC-NIR OTH 21 .12 .58 .08 0

1 LBP-TOP [9, 14] 39 39 39 A0 SUR .12 .36 .20 .32 0
2 OSF [24] - 45 . . REP 07 .33 .26 .04 .30
3 STM [51] 33 A7 . . ,

o _1 ()S'“;r [25] 3-8 54 _ . {b:l BI‘VEF‘:)(}F {:lp-E}( -u!ii DIlSEt}

] .

Z 5 LBP-SIP [21] A0 55 - - , ,

26 wEwW 6] o e _ ) DIS HAP OTH SUR REP

S 7 STLBP-IP [22] 57 58 - - DIS 49 07 44 0 0

% & OSF+0OSW [52] 29 %1 - - HAFP 03 .59 I8 03 16

z 9 LF;DM [30] 30 54 60 .60 OTH 21 .09 .62 .01 .06
g oparse 51 60 - - SUR .04 .12 .08 .76 0

Sampling [29]

11 STCLQP [23] 58 61 i - REF 07 .19 .22 0 .52
12 MDMO [28] A4 - - -
13 [Bi-WOOF Db 53 .62 AT | CASME II SMIC-HS
LEP Bin F-measure Accuracy F-measure Accuracy
14 S8 Al A8 Al
(random & onset) 1 .39 46.09 A6 45.12
15 LEBP A 45 49 54 2 1 a7.20 .50 50.00
(apex & onset) 3 .00 55.56 .49 48.78
g (random & onset) 5 60 58.02 53 54.27
¥ Ei“:;'f& et 43 A8 49 a7 6 58 54.32 54 54.27
2 mwoor 7 57 54.32 50 50.00
50 46 26 50 8
9

18 random & onset) - ' : : -g; L;??; jg l’iﬁ.gg
Bi-WOOF ik i A e o
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Ablating the weights

(a) SMIC-HS How do the Bi-WOOF weights affect

Local the outcome of recognition?

Weights None Flow Strain . .. . .
Crucial for Strain information to weigh the
None A4 42 A3

Flow 51 52 =0 contribution of blocks globally
Strain .54 .62 .09

(zlohal

Locally, Flow magnitudes are good as
(b) CASME II weights to the Flow orientation

Local No weights, not good!
Weights None Flow Strain

MNone A3 52 A9 . .
v 53 s s Computational cost savings of ~33

Strain .59 61 .59 ti mes

zlobal

END OF SECTION



(IV) Deep Learning methods

- Deep Learning methods (needs no introduction here!) have been slow
in adoption for ME recognition but has gained some momentum in
recent years.

. Key problems:

 Low number of samples (CASME II: 247, SAMM: 159) =» Very low in DL
standards!

- Databases have different number of classes (CASME II: 5, SMIC: 3, SAMM:
5, 6 or 7) = Inconsistent benchmarking

- Existing architectures were built with large-scale natural “in-the-wild"
images in mind (ImageNet, Places365, LFW) = Limited suitability even
for transfer learning

- Some possible remedies:

- The closest models that we could find are those trained for face
recognition and facial expression recognition.

+ Merging of datasets
- Data augmentation



Deep Learning methods: Early attempts

- One of the earliest efforts — Kim et al. (MM 2016):

- CNN with expression states +LSTM: 5-layer CNN for learning spatial
features with expression-states, constrained by 5 objective terms
connected to a 2-layer LSTM (512 units each)

Part 1. Spatial feature learning

with expression-state constraints Espression-states
Onset Apex
Onzet toapex Apex to ffset Offaet
Ezpresson , Trainng frames with corresponding
e intensity M ground truth labels (expression class,
Training video sequence Frames expression-state)

*
.
:

Tnput: traini Representative Micro-gcpressim spatigl feature thpm:
video sequences expression-state frames o] e M wih '.he Trained CNN
proposed objective finctions model

Part 2. Temporal feature Exiracting spafial OupE
learning with LSTM cimg spatia Micro-expression temporal ( . g
| feature r entation \ ] Trained LSTM
orwm feature leaming on LSTM model
Training video sequences with
corresponding ground truth labels
(empression class) Method Acc. (%)
LBP-TOP [19] 4412
Kim, D. H.,, Baddar, W. J., & Ro, Y. M. (2016). Micro-expression LBP-TOP + adaptive motion magnification [13] 51.91
recognition with expression-state constrained spatio-temporal feature LBP-MOP [16] 45.75
representations. In Proceedings of the 24th ACM international Riesz wavelet [12] 46.15

conference on Multimedia (pp. 382-386). Proposed method 60.98




Deep Learning methods: Early attempts

- Another early effort — Patel et al. (ICPR 2016):
- Transfer learning from existing object and facial expression based CNN
models

Video Processing eep Feature Extraction Feature Selection N\

NOoOoooo| Comvolution | Com conw

. ax-pooling g _ - = -
For train subject i, select Filters=3x3x1 Windp - g] F'lt:;s 3f::64 uraf[gogl f 3fi;§4 wf[ggl Fully
features  using  training Maps=64 ) aps= sleel m= “léleonnected

‘
- d Face | Crop . data, which is further split §:2 layer softmax
Iceo.sequence RGB image Difference image| |V valid. subject j € {1, n} - i, Random crop l
1/“ valid. training data = {data — l v
i ‘ datali] - data[j]} and valid. test
data = datalj] r
[10l0l0f1]111l0] — B —
EEEEIE

Pad=1 Stride=2 Pad=1

P=1 5=2

ASM Landmark Face registration Output

detection Test with features on test data = Original image "PHt Image 20x20@64 10x10@64 Sx5@128 7 labels
\ Deep Feagms.. datall] fsm@lg 404081 yoxa0@64 20x20@64 10x10@128 1x1@7
\ 1 o Emotion class Database
\ TiM ModeJ Statistics Recognition J Approach VIS | HS | Casme Il CNN
Our approach 563 | 536 | 473 Database | Object | FE
LBP-TOP (baseline) [14] | 52 48 38 VIS 29.5 56.3
STCLQ [8] - 64 59 HS - 53.6

- Feature selection using evolutionary algorithm

=>» Search for an optimal set of deep features so that it does not overfit
training data and generalizes well for test data

Patel, D., Hong, X., & Zhao, G. (2016). Selective deep features for micro-expression recognition. In 2016 23rd international conference on pattern
recognition (ICPR) (pp. 2258-2263)



(IV) Deep Learning methods

- Multi-Taxonomy of Deep Learning Approaches for ME recognition
* Input:
- Sequence of video frames

- Single representative frame (e.g. apex frame) f = E
* + Enriched input

- Depth:
- Deep networks (transfer learning from spatial, sequential) II“. II
- Shallow networks

- Data domain:
- Intra-domain learning @

- Inter-domain learning, ‘Q‘.
l.e. domain adaptation / regeneration

Og
Bo @



Factor (I): Input

- Q: What kinds of input(s) would be suitable for deep learning in ME?

- Biggest dilemma: ME sequence vs. apex frame
- ME Sequence: Makes sense (!) to capture transitive differences between frames

- ME Apex Frame: “/ess /s more”(Liong et al. 2016). Due to the minute
differences between frames, using all frames in sequence is redundant and is
not necessarily better

- ME images are simply just RGB/gray values, why not enrich data by
- Computing derived signals = optical flow, optical strain, etc.

- Use different sampling rates
- Stacking channels, multiple streams/branches



Deep Learning methods: Enriched LRCN

- 2 ways of enriching a CNN-
LSTM pairing (also known as
LRCN)

- Spatially: Gray, OF, OS images Q R L

stacked along CNN channel,

pass features to LSTM

- Temporally: Separate CNN
streams for Gray, OF and OS |
images , late fusion after FC, -~ __ o S
pass features to LSTM | i |

VGG-16 CONY
BLOCKS

e |

Spatial Dimension Enrichment

i3
ok
5z
"3
|
e L

Khor, H. Q., See, J., Phan, R. C. W., & Lin, W. (2018). Enriched long-term recurrent convolutional network for facial micro-expression recognition. In
2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) (pp. 667-674)



Deep Learning methods: Dual Temporal Scale CNN

- Dual Temporal Scale CNN - Peng et al.
- 2-stream CNN =» 64 channel & 128 channel, 5 layers each

- CNN pre-trained on macro-expression datasets CK+ and SPOS

u'» M CASMEV/II  CASME! CASMEIl
Convl Conv2 Conv3 Conv4
w " ’"“‘ — 1? > Pooll [ 3';" > Pool2 [ ‘;‘;" > Pool3 [—» :’;;’ L»] Poold [—» o T DB A S L R O SO T
P i Others (234) Tense (69), repression (38), Repression (27), Others (99)
contempt (9)
DTSCNNG4 Positive (41)  Happiness (9) Happiness (32)
Decision-level Surprise (45)  Surprise (20) Surprise (25)
Tosi »SVM
usion
i l‘“} "I‘ il l ” —| M L poott o] €2 Lol poot2 | ™3 Lol poois [ <™ Lo poold
DTSCNNI128 Methods Fold1 Fold2 Fold3 Average
DTSCHNNB4S TIMG4 65.45 B65.45 65.45 65.45
DTSCHN128 TIM128 65.45 66.36 65.45 B85.75
DTSCHNN (fusion) 67.27 B67.27 65.45 66.67

- Why “dual temporal scale”? CASME I is 60fps, CASME II 200 fps
- Data selected from CASMET + 1I, 4 classes (Negative, Others, Positive, Surprise)
- Data augmentation strategy =» Produces 20,000 video clips (500 clips / class)

Peng, M., Wang, C., Chen, T., Liu, G., & Fu, X. (2017). Dual temporal scale convolutional neural network for micro-expression
recognition. Frontiers in psychology, 8, 1745.



Deep Learning methods: Three Stream CNN

- 3 streams with different information:
- Facial Local Feature, facial region is divided equally into N-blocks.

- Static Spatial Feature, one single face image.
- Temporal Feature, optical flow over T-frames.

C1

Maxpooll ConvZ Conv3

ME Short Video

Song, B., Li, K., Zong, Y., Zhu, J., Zheng, W., Shi, J., & Zhao, L. (2019). Recognizing Spontaneous Micro-Expression Using a Three-Stream
Convolutional Neural Network. IEEE Access, 7, 184537-184551.



Deep Learning methods: AU assisted Graph CNN

AUG Relation Learning Madul ME
A;I!m? raph Relation rring =] .
Reprasantation Learning Module i AL Relation Graph — —
. C s R
© 0 Q| |a E Surprise
G A
3D | N %9 /
‘ ConvNet A c N E N .J 10N
Backbone P . f} .\) p S
|r1Pl.lt Sﬂﬂl uence . L T Surprise

- Two main modules:

- Representation learning module — typical feature learning + GAP

AU graph relation learning module — AU node features passes thru GCNs, essential
nodes are filtered through SAGPOOL

« AU-ME supervised loss (AU loss + ME loss)

- Data augmentation: Synthetic data is generated via a GAN using intensity of
different AU combinations

Xie, H. X., Lo, L., Shuai, H. H., & Cheng, W. H. (2020). AU-assisted Graph Attention Convolutional Network for Micro-Expression Recognition.
In Proceedings of the 28th ACM International Conference on Multimedia (pp. 2871-2880).



Deep Learning methods: AU assisted Graph CNN

micro-expression
SEQUENCE

attention mask
Eenerator

o J‘“ -
Al intensity T

extraction % L“

I

videa
discriminator
ety |
- “ authe
| . micro-
EXprESSIon
. Lot . image |
> authenticity |
mage ™ AL intensity

I, discrirninataor

AUB
AU12

happiness

AU9
AUL5

disgust
face image

AU1
AU2
AU26

surprise

. *

Anger repression Contempt

color mask
generator g o =
ﬂ T gy
ALl intensity
extraction
Dataset Happiness Disgust Surprise Fear Sadness
CASME I 32 63 28
synthetic CASME II 384 353 388
SAMM 26 9 15
synthetic SAMM 264 281 275

- 27

- 389
57 -
233 -

Table 1: A summary of the amount of training samples in real-world and the proposed synthetic dataset.

3.06
1.42

referenced
sequence

synthesized
sequence

referenced
sequence

synthesized
sequence

pa = o
= 3

134

referenced
sequence

synthesized
sequence

Xie, H. X., Lo, L., Shuai, H. H., & Cheng, W. H. (2020). AU-assisted Graph Attention Convolutional Network for Micro-Expression Recognition.
In Proceedings of the 28th ACM International Conference on Multimedia (pp. 2871-2880).



Factor (ll): Depth

- Q: Are "deep” architectures suitable?

- ME datasets are generally small in size, even with data augmentation, it may still
easily over-fit complex models

* Running LOSO is really taxing. CASME II has 26 subjects =» 26-fold, 26 models
were trained since 26 experiments required

- Some methods use off-the-shelf architectures (proven great in ImageNet)

- Some methods customize “shallow” architectures to cope with the
data/experimental scenario, while maintaining convolutional mechanism



Deep Learning methods: CNN with Recurrent Connections

Input Tensor Layer 1: Convolution

Layers2 — 5: Global Pooling

. Recurrent Convolution Layer
P —
: peesooooses : .
: : :

Approaches Evaluation
SMIC CASME CASME2

LBP-TOP[11] 0.537 0.577 0.592
LBP-SIP [29] 0.445 0.368 0.466
TICS[28)] 0.561 0.618 0.623
MDMO [13] 0.640 0.573 0.584
Pre-trained CNNs [30] | 0.301 0.376 0.304
CNNs[17] 0.325 0.471 0.491
MER-RCNN (Ours) 0.571 0.632 0.658

- "Recurrent convolutional layers” (RCL) — Transfer learning from existing object
and facial expression based CNN models

- Adding recurrent connections (i.e. RCNNSs) within the convolutional layers =
capture temporal changes of convolutional features

- Data augmentation strategy = “Temporal jittering” (random selection of % of
frames + down/up-sampling)

Xia, Z., Feng, X., Hong, X., & Zhao, G. (2018, November). Spontaneous facial micro-expression recognition via deep convolutional network.
In 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6).



Deep Learning methods: Shallow CNNs

Enriched!

i 7
I ﬁ %:::I .
I IER R s
>|5 3 ]
27
1 55
| \ 128
I %
Optical Flow | ‘
Extraction

I | 55

i —
I ﬁ:‘b .. 7

Aex Frame I I B 60
P | InputFeatures I 5 o 3 e Softmax
h N N - -l 55 27
128
% 2nd Convolutional .
. 1st Convolutional Blocks flow magnltudf: (m}
heterogeneous pairs. Blocks

optical strain magnitude (s)

a, 3= {m_l s, g} where o # gray level values (g)

- Motivation: Shallow networks can overcome over-fitting issue in most ME
datasets

Khor, H. Q., See, J., Liong, S. T., Phan, R. C., & Lin, W. (2019). Dual-stream shallow networks for facial micro-expression recognition. In 2019
IEEE International Conference on Image Processing (ICIP) (pp. 36-40).



Deep Learning methods: Dual Stream Shallow Networks

Dataset CASME II SMIC SAMM Parameters
Methods Accuracy | Fl-score | Accuracy | Fl-score | Accuracy | Fl-score | (Million)
LBP-TOP (baseline) 0.3968 0.3589 0.4338 0.3421 0.3968 0.3589 -
LBP-SIP 0.4656 0.448 0.4451 0.4492 - - -
Hand- Bi-WOOF [2] 0.5789 0.6100 0.6220 0.6200 - - -
crafted Hier. STLBP-IP [6] 0.6383 0.6110 0.6010 0.6130 - - -
Bi-WOOF + Phase [7] 0.6255 0.6500 0.6829 0.6730 - - -
EVM + HIGO [8] 0.6721 - 0.6829 - - - -
ELRCN [13] 0.5244 0.5000 - - - - 219
Deep CNN-LSTM [12] 0.6098 - - - - - 4.52
learning AlexNet (baseline) 0.6296 0.6675 0.5976 0.6013 0.5294 0.4260 62.38
SSSN 0.7119 0.7151 0.6341 0.6329 0.5662 0.4513 0.63
DSSN 0.7078 0.7297 0.6341 0.6462 0.5735 0.4644 0.97

(©

Fig. 5: Visualization of activations for DSSN (on CASME II)
after Multiply merge on the last conv blocks. (a) Repression,
(b) Disgust, (c) Happiness, (d) Others, (e) Surprise. Elabora-
tion on the AUs are provided in the supplementary materials.

(e)

Khor, H. Q., See, J., Liong, S. T., Phan, R. C., & Lin, W. (2019). Dual-stream shallow networks for facial micro-expression recognition. In 2019
IEEE International Conference on Image Processing (ICIP) (pp. 36-40).



Deep Learning methods: Shallow Triple Stream 3D CNN

f1,1 — — :
Fis Network Depth :’ﬂﬂ;’;’ Image Input Size ?ﬂi“:ﬁ“
lf-l“F STSINet 2 D.O0167 28 = 28 = 3 5. 7366
- . OFF-ApexNet [7] 5 2.77 I8 % 28 % 2 5.5632
' AlexMet [12] B il 227 % 22T w3 1229017
~ £ SqueezeNet [10] 12 1.24 227 % 227 x 3 143704
Apex Optical Flow Features Features GoogleMet [28] 2 T 224 w224 « 3 293022
—[SpottingH Computation HConcatenation VGGG [27] 16 138 224 » 224 » 3 U5.4436
- - Full
e - No. Methods Acc  Fl-score UFI UAR
gt l 2 - l K/ T LBP-TOP baseline - 5 0.5882 0.57%5
4 s s Sp2 2/ || @ 2 Bi-WOOF [21] 0.6833  0.6304 0.6296 0.6227
a2 ‘ilr&@m 16;:®s 3 AlexNet [12] 0.7308  0.6959 0.6933 0.7154
\ I 2 5 P @ 4@ 4 SqueezeNet [10]  0.6380 0.5964 0.5930 0.6166
5 s \ N 5  GoogleNet [28]  0.6335 0.5698 0.5573 0.6049
u_; P}j@o : ‘ @ 6 VGGI6 [27] 0.6833  0.6439 0.6425 0.6516
I . 5 ‘ 7  OFF-ApexNet [7] 07460 0.7104 0.7196 0.7096
Fully |} 8  STSTNet 0.7692  0.7389  0.7353  0.7605
Conv Pooling Concatenate Pooling Connected
Layer Filier size  # Filters  Stride  Padding Output size
. . -1 Tx3 =3 3 .11 1 T = 28 % 3
- 3D convolutions on 5-channel input volume, Cl2  3x3x3 5[] 1 2Mx2Axs
. Cl1-3 Ix3Ix3 B [1,1] 1 28 = 2 x 8
all homogenous 3x3 filters, small FC layer. PLT - 3x3 S B L
o . Pl1-3 Ix3 - []-:3] 1 1 = 1 = 8
- Just over a thousand parameters. Efficient! P2 33 C R 0 sxsxis
FC - - - - 400 = 1
- 2nd place in MEGC 2019 Recognition Softmax____- - - - ER

Challenge (composite database)

Liong, S. T., Gan, Y. S., See, J., Khor, H. Q., & Huang, Y. C. (2019). Shallow triple stream three-dimensional cnn (ststnet) for micro-expression
recognition. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5).



Factor (I1l): Data Domain

+ Q: Should models be learned from a similar domain or from multiple
(related) domains?
- Intra-domain: Learning from micro-expression domain only

- Inter-domain: Learning from other relevant domains — macro- (or ‘'normal’)
expressions, synthetic data/avatars, etc.

* Transferring macro-expression model to micro-expression

» Training is done by acquiring ~10K images from several macro-expression
datasets (CK+, Oulu-CASIA, Jaffe, MUGFE), most frames near the apex frame
were selected.

* Then, transfer learning is done on the micro-expression datasets
- Best method in MEGC 2018 on both HDE and CDE protocols

Peng, M., Wu, Z., Zhang, Z., & Chen, T. (2018). From macro to micro expression recognition: Deep learning on small datasets using transfer
learning. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) (pp. 657-661).



Deep Learning methods: Domain Adversarial Network

Apex frame Middle frame

'1 i . ™+ Motivated by Ganin’s “"domain adversarial networks”
acro-expression

;\‘ ﬂ & . Bridginq macro- apc_:l mi_cro—expression o.Iomains via
Expression Magnification and Reduction (EMR)

- Reduction: Picking middle frame between onset and
apex of macro sample (relabeled CK+ dataset)

- Magnification: Magnifying micro sample

Apex frame After magnification

Micro-expression
maghnification

—

+ Upper and lower part of tensor are extracted
separately, merged at FC level

part feature expression recognition

t . .
b °r5.| concateration] -~ O O O+ Adversarial loss is computed between last feature
w vector of macro- and micro- sample

-y '| L + 1st place in MEGC 2019 Recognition Challenge
discriminator .
(composite database)

Liu, Y., Du, H., Zheng, L., & Gedeon, T. (2019). A neural micro-expression recognizer. In 2019 14th IEEE international conference on automatic
face & gesture recognition (FG 2019) (pp. 1-4).



Deep Learning methods: Domain Regeneration for Cross-DB

"\
N

~ TR o e

erspective

~~~~~~~~~ of ME,L“_“.‘EO_? Learning Classifier

- Feature distribution from a source database is regenerated closely to the feature
distribution of target database via subspace learning.

- Initiation requires both the features to be mapped into a Reproduced Kernel
Hilbert Space ( RKHS)

- Feature distribution is minimized via optimizing Maximum Mean Discrepancy
(MMD) defined in RKHS.

Zong, Y., Zheng, W., Huang, X., Shi, J., Cui, Z., & Zhao, G. (2018). Domain regeneration for cross-database micro-expression recognition. IEEE
Transactions on Image Processing, 27(5), 2484-2498.



Deep Learning methods: Knowledge Distillation

Task3:
Micro-expression Recognition

i

3
ol 5

E HH EE
- g >
5
(&)

Student

network

Task1:
Facial View Classification .
ki - gl Testing [OFF] _
/ 8 v '8) ) ] ‘ | -
/
Residual |
Network
Training [ON]
Task2: S § )
Teacher Action Units Recognition :
network
(Y] (B)
Training from Fine-tune- Training from Fine-tune-
SMicz scratch AUCNN IS-AUCNN CASME scratch AUCNN TS-AUCNN
Average ACC(%) 58.82 76.06 Average ACC(%) 66.67 75.1 81.8
F;-score 0.54 0.71 Fy-score 0.58 0.72 0.77
© [(8)
Training from Fine-tune- Training from Fine-tune-
CASMEII scratch AUCNN TS-AUCNN SAMM scratch AUCNN TS-AUCNN
Average ACC(%) 58.38 66.55 72.61 Average ACC(%) 66.67 84.08 86.74
F;-score 0.45 0.60 0.67 Fy-score 0.61 0.79 0.83

+ Also concluded that “crucial” temporal sequences is better
than whole video for ME recognition!

- (Teacher) A larger
network fine-tuned with
larger datasets.
(FERA2017)

* (Student) A smaller
network fine-tuned on
micro-expression, with
hint information on the
FC-level.

Sun, B., Cao, S., Li, D., He, J., & Yu, L. (2020). Dynamic Micro-Expression Recognition Using Knowledge Distillation. IEEE Transactions on

Affective Computing.




“Spot-then-recognize” approaches

- Both ME analysis tasks (spotting, recognition) often treated
individually

- Realistic expectation and application: spot-THEN-recognize
- "Where"” and “What" is the emotion

- A seamless framework will allow fully automated ME analysis systems
to be built



Spot-then-

Recognise T R N .
: g Long videos : ME Spotting :
Pipeline : :
—* | Tracking & LEF FD —
i block division K feature M analysis | Thresholding i
] 1
L Indexes of spotted squences
Spotted

sequences ME recognition

)
CCLLL] || Face —n|me —D|TIMID = —"E

Alighment a=4

Li, X., Hong, X., Moilanen, A., Huang, X., Pfister, T., Zhao, G., & Pietikdinen, M. (2017). Towards reading hidden emotions: A comparative study of
spontaneous micro-expression spotting and recognition methods. IEEE transactions on affective computing, 9(4), 563-577.
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- First attempt at spot-then-recognise scheme
- Spotting TPR = 74.86%

- “Spot-then-recognize” accuracy = 56.67%
using correctly spotted ME sequences

- Overall system performance = 74.86 x 56.67
= 42.42%

Li, X., Hong, X., Moilanen, A., Huang, X., Pfister, T., Zhao, G., & Pietikdinen, M. (2017). Towards reading hidden emotions: A comparative study of
spontaneous micro-expression spotting and recognition methods. IEEE transactions on affective computing, 9(4), 563-577.



Spot-then-
Recognise
Approach

(Lietal., 2017)

Li, X., Hong, X., Moilanen, A., Huang, X., Pfister, T., Zhao, G., & Pietikdinen, M. (2017). Towards reading hidden emotions: A comparative study of

[ SMIC-HS | SMIC-VIS | SMIC-NIR | CASMEI |

LBP 57.93% 70.42% 64.79% 55.87%
LBP+Mag 60.37% 78.87% 67.61% 60.73%
HOG 57.93% 71.83% 63.38% 57.49%
HOG+Mag 61.59% 77.46% 64.79% 63.97%
HIGO 65.24% 76.06% 59.15% 57.09%
HIGO+Mag 68.29% 81.69% 67.61% 67.21%
HIGO+Mag* | 75.00%* | 83.10%* 71.83%* | 78.14%*
Li [18] 48.8% 52.1% 38.0% N/A
Yan [20] N/A N/A N/A 63.41%*

[ Wang [39] 71.34%* N/A N/A 65.45%*
Wang [57] 64.02%* N/A N/A 67.21%*
Wang [58] N/A N/A N/A 62.3%
Liong [59] 53.56% N/A N/A N/A

[ Liong [60] 50.00% N/A N/A 66.40%*

* results achieved using leave-one-sample-out cross validation.

Best Recognition Accuracy (with hand-labelled
ME sequences, i.e. without spotting)

= 67.21% (CASMEII)

spontaneous micro-expression spotting and recognition methods. IEEE transactions on affective computing, 9(4), 563-577.




Benchmarking via Human Test

Spot-then-
Recognise
Approach

o 15 subjects (avg. age 28.5 years, 10 male, 5 females)

o Definition of emotions explained, ME clips from
SMIC-VIS were shown, subjects asked to select their
answers after watching them

(Lietal., 2017) o Mean accuracy = 72.11% (SMIC-VIS accuracy using
proposed method = 81.69%)

Insights:
o A very first attempt at a combined spotting and
recognition pipeline
e Pros: Gives a glimpse of possibility of real-world
practical applications

o Limitations: Problems in spotting (fixed spotting
intervals, non-ME movements) hamper recognition
capability

Li, X., Hong, X., Moilanen, A., Huang, X., Pfister, T., Zhao, G., & Pietikdinen, M. (2017). Towards reading hidden emotions: A comparative study of
spontaneous micro-expression spotting and recognition methods. IEEE transactions on affective computing, 9(4), 563-577.



Spotting “in-the-wild” on MEVIEW database

Eye blinking

Partially occluded
faces;

Multiple faces;

Head movement;
Drinking water
Inconsistency lighting

. o & P. Husak, J. Cech, J. Matas, Spotting
LALAGUNA KOS facial micro-expressions \in the wild", in:

RONALPOK®, im s RIVER|  68]10¢ 5& .. .
i O01 : ¢ 22nd Computer Vision Winter

Workshop (Retz), 2017.




Spotting “in-the-wild” on MEVIEW database

Database SMIC-E-NIR [10] SMIC-E-VIS [10] SMIC-E-HS [10] CASME II-RAW [9] I MEVIEW [13] I
Year 2013 2013 2013 2014 2017 I
Subject 8 8 16 26 | 14

Sample 71 71 157 246 21 I
Frame rate (fps) 25 25 100 200 I 30 I
Elicitation Constrained Constrained Constrained Constrained

I In-the-wild
environment lab condition lab condition lab condition lab condition

P. Husak, J. Cech, J. Matas, Spotting
facial micro-expressions \in the wild", in:
22nd Computer Vision Winter
Workshop (Retz), 2017.



Spotting “in-the-wild” on MEVIEW database

Face Detection
and Face Cr::-pping
Face Paose S
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Flow Features
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P. Husak, J. Cech, J. Matas, Spotting
facial micro-expressions \in the wild", in:
22nd Computer Vision Winter
Workshop (Retz), 2017.




Spotting “in-the-wild” on MEVIEW database

Apex Spotting Recognition
Database
ASR F1-score
SMIC-E-VIS [10] 0.28 0.53
Constrained Lab  SMIC-E-NIR [10] 0.27 0.43
Condition g\ i1C E-HS [10] 0.38 0.47
CASME II-RAW [9 0.82 0.59
In-the-wild MEVIEW [13] 0.33 0.67



End of Part 4

Questions?



