Tutorial

Recent Advances and Challenges in Facial Micro-Expression Analysis

John See Multimedia University, Malaysia Moi Hoon Yap Manchester Metropolitan University, UK Su-Jing Wang Chinese Academy of Sciences, China Jingting Li Chinese Academy of Sciences, China Sze-Teng Liong Feng Chia University, Taiwan

Speaker: Dr. Moi Hoon Yap, Reader in Computer Vision

Spontenous Actions and Micro-facial Movements (SAMM) Dataset

Manchester Metropolitan University

The Development Process of SAMM

Davison, A.K., Lansley, C., Costen, N., Tan, K. and Yap, M.H., 2016. SAMM: A spontaneous micro-facial movement dataset. *IEEE Transactions on Affective Computing*, 9(1), pp.116-129. Data available at: http://www2.docm.mmu.ac.uk/STAFF/m.yap/dataset.php

Facial Expressions

Facial Expressions

- 7 basic emotions: Happy, Sad, Anger, Disgust, Fear, Surprise and Contempt
 Pioneered by Paul Ekman [1]
- Work on facial expression recognition highly influenced by psychological research in emotion

• Facial Micro-expressions

- Occurs when a person attempts to suppress a facial expression
- •Very short in duration, generally lasting no longer than 1/2 second [2]

[1] Ekman, P.: Emotions Revealed: Understanding Faces and Feelings. Phoenix (2004)[2] Ekman, P.: Lie catching and microexpressions. In: The Philosophy of Deception. Oxford University Press (2009)

Why Facial Micro-expressions?

• Facial Micro-expressions

[1] Davison, A.K., Lansley, C., Costen, N., Tan, K. and Yap, M.H., 2016. SAMM: A spontaneous micro-facial movement dataset. *IEEE Transactions on Affective Computing*, *9*(1), pp.116-129.

[2] Wen-Jing Yan, Xiaobai Li, Su-Jing Wang, Guoying Zhao, Yong-Jin Liu, Yu-Hsin Chen, and Xiaolan Fu. Casme ii: An improved spontaneous microexpression database and the baseline evaluation. PLoS ONE, 9(1):e86041, 01 2014.

Why SAMM?

•Why Facial Micro-expressions?

- Being able to extract micro-movements when someone is attempting to hide true feelings would help real-world application of security and deception detection
- To help people with health problems such as depression or facial paresis. This approach works to help people who cannot readily identify the problems they are facing day to day
- To train humans to better understand microexpressions by combining technological approaches and allow for improved integration of cross-discipline research

[1] Ekman, P.: Emotions Revealed: Understanding Faces and Feelings. Phoenix (2004)[2] Ekman, P.: Lie catching and microexpressions. In: The Philosophy of Deception. Oxford University Press (2009)

Why SAMM?

•Limited Datasets available in this field

Dataset	Participants	Resolution	FPS	Samples	Emotion Classes	FACS Coded	Ethnicities
Polikovsky [14]	11	640×480	200	13	7	Yes	3
USF-HD [21]	N/A	720×1280	29.7	100	4	No	N/A
YorkDDT [22]	9	320×240	25	18	N/A	No	N/A
CASME [25]	35	640×480, 1280×720	60	195	7	Yes	1
SMIC [24]	20	640×480	100 and 25	164	3	No	3
CASME II [26]	35	640×480	200	247	5	Yes	1
SAMM [27]	32	2040×1088	200	159	7	Yes	13
CAS(ME) ² [28]	22	640×480	30	250 macro, 53 micro	4	No	1

Merghani, W., Davison, A.K. and Yap, M.H., 2018. A review on facial micro-expressions analysis: datasets, features and metrics. *arXiv preprint arXiv:1805.02397*.

Ethics

• Approved by Research Ethics Committee at The Manchester Metropolitan University (SE121318A1)

•All participants signed informed consent to take part and for their images to be published for research.

Equipment

- Camera: Basler Ace acA2000-340km, with a greyscale sensor, set to record at 200fps, resolution 2040 x 1088
- •32 inch flat screen TV to display stimuli

• High-Speed Data Capture

- Frame grabber: A RAID array of independently tested solid state drives to avoid frame drop
- Software: IO industries Streams 7

Lighting

- Two lights that contained an array of Light Emitting Diodes (LEDs)
- •Illuminance of 1750 lux at 50cm

Experimental Setup

•Observer controlled the equipment and use one way mirror room and intercom system for communication

Questionnaires

- •Before experiment: to find suitable stimuli
- •After experiment: for self-report on emotion experience

Stimuli

• The majority of the emotional inducement stimuli were video clips from the Internet

• Full Process

Invitation and recruitment

- Observer recruit Participant and email a questionnaire. Participant to return questionnaire before the experiment.
- Observer prepares the stimuli and schedule Participant for the experiment
- During experiment
 - Observer (O) gives an overview of the experiment to Participant (P)
 - •P sign consent form (if agree)
 - P completes an experiment by watching tailored stimuli while O recording P using high-speed camera
 - •P self-report on a questionnaire
 - •P thanked and leaves the experiment

Davison, A.K., Lansley, C., Costen, N., Tan, K. and Yap, M.H., 2016. Samm: A spontaneous micro-facial movement dataset. *IEEE Transactions on Affective Computing*, 9(1), pp.116-129.

Ρ

(a)

(c)

D

(b)

Facial Action Coding Systems – FACS Coding

Facial Action Coding Systems

- SAMM is coded by three certified FACS Coders
- •Reliability score: The number of AUs where all coders agreed divided by the total number of AUs scored by all coders (*FACS Investigator's Guide*)

SAMM Dataset

Summary

• Participants:

- 32 participants (equal gender split)
- Mean age: 33.24 years
 (SD: 11.22)
- (SD: 11.32)
- 13 ethnicities
- Image properties:
 - 200 fps
 - 2040x1088 original recording resolution
 - 400x400 facial resolution
- FACS Coding
 - 159 micro-movements
 - FACS reliability score: 0.82

Upper Face				Lower Face		
AU	No. Of Occurrences			No. Of Occurrences		
	Up to 100 Frames	101 to 166 Frames		Up to 100 Frames	101 to 166 Frames	
1	6	5	9	5	1	
2	16	7	10	5	3	
4	23	14	12	29	13	
5	9	8	14	11	7	
6	5	0	15	4	1	
7	45	14	17	7	6	
Other	9	9	20	7	2	
			23	1	3	
			Other	40	23	
Total	113	57	Total	109	59	

Subtlety versus Duration

• This is what we expect in micro-expressions: *short duration and subtle*

• This is what we found: *short duration but not subtle*

Frame Rate and Resolution

•What is the best frame rate?

•What is the best resolution?

• Our study in 2018 showed:

LBP-TOP (texture-based features): Perform better in high resolution and high frame rate
3DHOG (gradient-based features): Perform better in low specification
HOOF (optical flow-based features): High frame rate improved recognition rate but increasing resolution did not give a significant improvement

• How about deep learning?

Merghani, W., Davison, A.K. & Yap, M.H. The implication of spatial temporal changes on facial micro-expression analysis. *Multimed Tools Appl* **78**, 21613–21628 (2019). https://doi.org/10.1007/s11042-019-7434-6

Consistency of FACS Coding

Motivation

Wen-Jing Yan, Xiaobai Li, Su-Jing Wang, Guoying Zhao, Yong-Jin Liu, Yu-Hsin Chen, and Xiaolan Fu. Casme ii: An improved spontaneous microexpression database and the baseline evaluation. PLoS ONE, 9(1):e86041, 01 2014.

Introduction of Objective Classes

•AU Groups

Each class represents AUs that can be linked to emotion.

Class	Action Units
Ι	AU6, AU12, AU6+AU12, AU6+AU7+AU12, AU7+AU12
п	AU1+AU2, AU5, AU25, AU1+AU2+AU25, AU25+AU26,
п	AU5+AU24
ш	A23, AU4, AU4+AU7, AU4+AU5, AU4+AU5+AU7,
	AU17+AU24, AU4+AU6+AU7, AU4+AU38
	AU10, AU9, AU4+AU9, AU4+AU40, AU4+AU5+AU40,
IV	AU4+AU7+AU9, AU4 +AU9+AU17, AU4+AU7+AU10,
	AU4+AU5+AU7+AU9, AU7+AU10
V	AU1, AU15, AU1+AU4, AU6+AU15, AU15+AU17
VI	AU1+AU2+AU4, AU20
VII	Others

Class	CASME II	SAMM	Total
Ι	25	24	49
II	15	13	28
Ш	99	20	119
IV	26	8	34
V	20	3	23
VI	1	7	8
VII	69	84	153
Total	255	159	415

Introduction of Objective Classes

Confusion matrix on Original CASME II classes compared to Objective Classes: Improved accuracy
Objective Classes for SAMM and CASME II. Additionally, introduction of Emotional Classes for SAMM

The First Facial Micro-expression Grand Challenge

• Shanghai China, May 2018: To promote interactions between researchers and scholars not only from within this niche area of facial micro-expression research, but also including those from broader, general areas of expression and psychology research

Yap, M. H., See, J., Hong, X., & Wang, S. J. (2018). Facial micro-expressions grand challenge 2018 summary. FG 2018, pp. 675-678.

How to access to objective classes coding?

• Refer to MEGC2018 website:

http://www2.docm.mmu.ac.uk/STAFF/m.yap/FG2018Workshop.htm

• Or directly download the guidelines from:

http://www2.docm.mmu.ac.uk/STAFF/m.yap/files/MEGC_Guidelines.pdf

Objective Class	CASME II	SAMM
I	25	24
II	15	13
ш	99	20
IV	26	8
V	20	3
VI (not used)	1	7
VII (not used)	69	84
Total (I+II+III+IV+V)	185	68

The Second Facial Micro-expression Grand Challenge

• Lille France, May 2019: Regular papers, Challenges in recognition and spotting

See, J., Yap, M.H., Li, J., Hong, X. and Wang, S.J., 2019, May. MEGC 2019–The Second Facial Micro-Expressions Grand Challenge. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5). IEEE.

The Second Facial Micro-expression Grand Challenge

Challenge I: Spotting

Database	ME Sequences	Resolution	Frame rate (fps)
CAS(ME) ²	32	640×480	30
SAMM	79	2040×1088	200

Note: SAMM Long Videos for this version was an one-off released for the challenge. It is different from SAMM Long Videos with micro- and macro-expressions.

Challenge II: Recognition

Emotion Class	SMIC	CASME II	SAMM	3DB-combined
Negative	70	88^{\dagger}	92^{\ddagger}	250
Positive	51	32	26	109
Surprise	43	25	15	83
TOTAL	164	145	133	442

[†]Negative class of CASME II: Disgust and Repression. [‡]Negative class of SAMM: Anger, Contempt, Disgust, Fear and Sadness.

Details: https://facial-micro-expressiongc.github.io/MEGC2019/

See, J., Yap, M.H., Li, J., Hong, X. and Wang, S.J., 2019, May. MEGC 2019–The Second Facial Micro-Expressions Grand Challenge. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5). IEEE.

SAMM Long Videos

A Spontaneous Facial Micro- and Macro-Expressions Dataset Motivation:

- •Limited amount of micro-expression based datasets
- Especially long video dataset (only one annotated publicly available dataset, CAS(ME)²)

A COMPARISON BETWEEN SAMM LONG VIDEOS AND CAS(ME)²

Dataset	SAMM Long Videos	$CAS(ME)^2$
Number of Long Videos	147	87
Number of Videos with micro	79	32
Resolution	2040×1088	640×480
Frame rate	200	30
Number of Macro-expressions	343	300
Number of Micro-expressions	159	57

SAMM Long Videos

First released: December 2019 Micro- and Macro-Expressions

 Metropolitan

 University
 Yap, C.H., Kendrick, C. and Yap, M.H., SAMM Long Videos: A Spontaneous Facial Micro-and Macro-Expressions Dataset.

 In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG) (pp. 194-199).

The Third Facial Micro-expression Grand Challenge

• Virtual, November 2020: Regular papers and challenge in Spotting

Li, J., Wang, S., Yap, M.H., See, J., Hong, X. and Li, X., MEGC2020-The Third Facial Micro-Expression Grand Challenge. In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG) (pp. 234-237).

SAMM Users

• Based on 30th November 2020 statistics

SAMM Users

Based on 30th November 2020 statistics

Challenges

- Limited datasets
- FACS Coding for new dataset
- In-the-wild data almost impossible to collect
- Difficulty of detecting subtle motion
- End-to-end deep learning method
- Real-time processing
- Optimisation
- Real-world applications

Davison, A.K., Yap, M.H., Costen, N., Tan, K., Lansley, C. and Leightley, D., 2014, September. Microfacial movements: An investigation on spatio-temporal descriptors. In *European conference on computer vision* (pp. 111-123). Springer.

Davison, A.K., Yap, M.H. and Lansley, C., 2015, October. Micro-facial movement detection using individualised baselines and histogram-based descriptors. In *2015 IEEE International Conference on Systems, Man, and Cybernetics*(pp. 1864-1869). IEEE.

Davison, A., Merghani, W., Lansley, C., Ng, C.C. and Yap, M.H., 2018, May. Objective micro-facial movement detection using facs-based regions and baseline evaluation. In *2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018)* (pp. 642-649). IEEE.

Merghani, W. and Yap, M.H., Adaptive Mask for Region-based Facial Micro-Expression Recognition. In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG) (pp. 428-433). IEEE Computer Society. Q & A Email: M.Yap@mmu.ac.uk

@moihoonyap

Thanks!

Sudan University of Science and Technology

Datasets available at: http://www2.docm.mmu.ac.uk/STAFF/m.yap/dataset.php