Facial Micro-Expression Analysis – A Computer Vision Challenge

V. Challenges & Future Avenues

JOHN SEE Multimedia University, Malaysia
ANH CAT LE NGO TrustingSocial
SZE-TENG LIONG Feng Chia University, Taiwan
So, we decided that we should meet up and have a “real-world” look at each other’s expressions...
5 “Objective classes” (grouped by Facial AU) instead of emotion classes

Cross-database protocols

- **Holdout Database Evaluation (HDE)**
 - Train on one dataset, Test on the other. Swap, repeat. (WAR, UAR)

- **Composite Database Evaluation (CDE)**
 - Combine both datasets, evaluate by LOSO (F1-score)
UAR results are very close
6 papers accepted (50%) – 3 challenge, 3 non-challenge
Enriched Long-term Recurrent Convolutional Network (ELRCN)

- 2 ways of enriching a CNN-LSTM pairing
 - **Spatially**: Gray, OF, OS images stacked along CNN channel, feats. passed to LSTM
 - **Temporally**: Separate CNN streams for Gray, OF and OS images, late fusion after FC, feats passed to LSTM

Enriched Long-term Recurrent Convolutional Network (ELRCN)

Transfer learning of macro-trained deep models

- Train deep models on macro-expression apex samples ➔ Transfer learning on micro-expression apex samples
 - **ResNet10** pre-trained on 4 macro-exp. datasets using apex frames
 - CK+ (852 images)
 - Oulu CASIA NIR & VIS (1200 images)
 - Jaffe (151 images)
 - MUGFE (8228 images)
 - TOTAL: 10,431 images ➔ oversample to 5,000 images/expression
 - Fine-tuning on micro-exp datasets using apex frames ➔ oversample to 200 images/expression
 - Assumption: That apex information is available!

Insights:

- Cross-database task is challenging
 - Leveraging macro-expression samples seem to work reasonably well
 - Lack of data -> LSTMs not suitable

- Efforts underway to create a new large-scale database

- We need more people to work on this area!
Subjectivity in humans

- Certain emotions (e.g. happiness) are easier to elicit compared to others (e.g. fear, sadness, anger)
- Some people are more “poker-faced” than others – they hide their emotions well!

Sample distribution

- Bias learning → Imbalanced distribution of samples per emotion, samples per subject

Creative strategies for inducement

- Complementary info from body region\(^1\), or heart rate from skin variations\(^2\)

\(^1\) Song et al. (2013). *Learning a sparse codebook of facial and body micro expressions for emotion recognition,* Proc of ACM Int. Conf. Multimodal Interaction

\(^2\) Gupta et al. (2018). *Exploring the feasibility of face video based instantaneous heart-rate for micro-expression spotting,* CVPR Workshops.
Subject diversity

- Most datasets contain a majority of subjects from one particular country or ethnicity

Environment and setting

- Real-world scenarios are much needed: Job interviews, criminal interrogation, patient assessment etc. (but many cannot pass ethic committees!)
- How about “two truths and a lie” game?
Challenges

SPOTTING

Landmark detection
- Room for improvement in existing methods. ME requires very stable detection / robust against noise to capture minute changes in facial muscles.

Threshold or classify?
- Most existing works employ rule-based strategies ➞ Not robust and adaptable!
- Per-frame classification of ME occurrence ➞ Rigid and noisy!

Onset and offset detection
- Current works do not consider detecting the start and end frames, which could be useful to trim ME sequences before classification
Block Selection

• Block-based methods of extracting features are quite popular

• Assignment of weights to blocks with key information ➔ New: Learn which blocks are discriminative

Eyes: To Keep or Not To Keep?

• Some4 works mask out eye regions to avoid eye blink motions, some5 think otherwise

3 Zong et al. (2018). Learning from hierarchical spatiotemporal descriptors for micro-expression recognition. IEEE T-MM

5 Duan et al. (2016). Recognizing spontaneous micro-expression from eye region,” Neurocomputing.
Feature crafting / learning
- Most crafted features circa 2014-2016 are still holding strong results – shape, motion
- DL getting popular 2016 onwards – pushing the limits

Cross-DB recognition
- Realistic setting (multi-environment)
- How to generalise across domains\(^6\)?
- MEGC\(^7\) leads this effort

Evaluation Protocol

- Use LOSO cross-validation\(^8\) instead of LOVO cross-validation (some works still do this! 😞)
 - LOVO exposes the training to samples belonging to the test sample subject

Performance Metrics

- Use F\(_1\)-score instead of Accuracy
 - Accuracy tends to be bias in imbalanced datasets or heavily skewed data
 - Use unweighted metrics that give equal emphasis to rare classes

Class Labels

- A few works consider fewer number of classes than it should be ➔ problem benchmarking!
- Emotion classes vs. Objective classes\(^9\)

\(^8\) Le Ngo et al. (2014). *Spontaneous subtle expression recognition: imbalanced databases and solutions*. ACCV

2nd MEGC @ IEEE FG 2019

14th IEEE International Conference on Automatic Face and Gesture Recognition

FG2019

2 Challenges:

- Cross-DB Recognition
- Spotting

Submission of papers: Challenge and non-challenge papers

Important Dates

- Submission Deadline: 27 January 2019
- Notification: 12 February 2019
- Camera-Ready: 15 February 2019
Many thanks to the our sponsors:

- Multimedia University, Malaysia
- Ministry of Higher Education, Fundamental Research Grant Scheme
- Belt and Road Initiative Research Scholar Exchange

our team throughout the years (2014-Current):

Anh Cat Le Ngo Yandan Wang Raphael C.W. Phan Sze-Teng Liong Yee-Hui Oh Huai-Qian Khor

and collaborators:

Moi-Hoon Yap
Manchester Metro. Uni

Xiaopeng Hong
Univ of Oulu, Finland

Su-Jing Wang
Institute of Psychology, CAS
Thank you